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Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian 
partial differential equations intrinsically, possessing the stochastic multi-symplectic 
conservation law. It is shown that the averaged energy increases linearly with respect 
to the evolution of time and the flow of stochastic Maxwell equations with additive 
noise preserves the divergence in the sense of expectation. Moreover, we propose three 
novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in 
order to investigate the preservation of these properties numerically. We make theoretical 
discussions and comparisons on all of the three methods to observe that all of them 
preserve the corresponding discrete version of the averaged divergence. Meanwhile, we 
obtain the corresponding dissipative property of the discrete averaged energy satisfied 
by each method. Especially, the evolution rates of the averaged energies for all of the 
three methods are derived which are in accordance with the continuous case. Numerical 
experiments are performed to verify our theoretical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In modeling of physical phenomena, stochastic differential equations are required to quantify the effects of randomness 
on the mathematical model. Taking the context of electromagnetism as an example, to model precise microscopic origins 
of randomness (the thermal motion of electrically charged microparticles), [12] established the theory of fluctuations of an 
electromagnetic field, which at the level of macroscopic view was via introducing fluctuation sources to obtain stochastic 
Maxwell equations. Based on this model, [14] proposed a method based on Wiener chaos expansion to determine the near 
field thermal radiation, and [10] described the fluctuation of the electromagnetic field using spectral representation. Without 
modeling the precise origins of randomness, rather assume that they lead to small stochastic variations of the coefficients of 
the equations, [7] studied the propagation of ultra-short solitons in a cubic nonlinear media, which is modeled by nonlinear 
Maxwell equations with stochastic variations of media; and assume that the externally imposed source is a random field, 
which is expressed by a Q-Wiener process, [4,9,11] dealt with the mathematical analysis of stochastic problems arising in the 
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theory of electromagnetic in complex media, including well posedness, controllability and homogenization. The stochastic 
model considered in this paper is based on [11, Chapter 12] for the isotropic homogeneous medium with an external source.

Recently, the stochastic multi-symplectic structure for three dimensional (3-D) stochastic Maxwell equations with addi-
tive noise was proposed in [2], based on the stochastic version of variational principle, which means that stochastic Maxwell 
equations are a system of stochastic Hamiltonian partial differential equations (PDEs). It has been widely recognized that the 
structure-preserving numerical methods have the remarkable superiority to conventional numerical methods when applied 
to Hamiltonian ODEs and PDEs, such as long-term behavior, structure-preserving, physical properties-preserving (energy, 
divergence, charge) etc.; see [6] and the references therein. Efforts have been devoted to the stochastic case. For example, 
authors in [5] established the theory for the stochastic multi-symplectic conservation law for the stochastic Hamiltonian 
PDEs and investigated a stochastic multi-symplectic method for stochastic nonlinear Schrödinger equation. Also a stochastic 
multi-symplectic wavelet collocation method was proposed in [3] to approximate stochastic Maxwell equations with a class 
of multiplicative noise, while [2] proposed another stochastic multi-symplectic method based on the stochastic variational 
principle.

Different from the approach of reference [2], we use a direct way to represent the stochastic Maxwell equations as 
another system of stochastic Hamiltonian PDEs, which avoids introducing extra variables and leads to cost efficiency. As a 
result, the stochastic Maxwell equations preserve the stochastic multi-symplectic conservation law almost surely. Meanwhile, 
we show that the averaged energy increases linearly as the growth of time, with the rate being K = 3(λ2

1 + λ2
2)Tr(Q ). Here 

λ1 and λ2 represents the levels of noise, and Tr(Q ) denotes the trace of operator Q . It means that the growth rate depends 
on the scale of noises and the trace of covariance operator only. This dissipative property of averaged energy may be 
due to the existence of external source. For the divergence, it is proved that the flow of stochastic Maxwell equations 
preserves the divergence in the sense of expectation. It means that electric flux and magnetic flux are preserved in Gaussian 
random fields in the statistical sense. In this paper, we propose three numerical methods to discretize stochastic Maxwell 
equations with additive noise in order to investigate the preservation of these physical properties numerically. Method-I is 
based on the application of implicit midpoint method in both temporal and spatial directions to the equivalent stochastic 
Hamiltonian PDEs, while Method-II being a three-layer method is constructed by central difference in both temporal and 
spatial directions, which exhibits the grid staggering property of electromagnetism. We utilize central difference in spatial 
direction and implicit midpoint method in temporal direction to obtain Method-III. We demonstrate that all of the three 
numerical methods preserve the corresponding discrete versions of multi-symplectic conservation law. Another aim of this 
paper is to investigate the numerical preservation of some important physical quantities including energy and divergence 
by numerical methods. For the energy, we obtain the corresponding dissipative property of the discrete averaged energy 
satisfied by each method. Furthermore, utilizing the adaptedness of solutions to stochastic Maxwell equations and properties 
of Wiener process, we estimate the dissipative rates with respect to time for three methods in our consideration, and we 
show that the discrete averaged energies evolute at most linearly with respect to time under certain assumptions. As for 
divergence, we show that all of the three methods preserve the discrete conservation law of averaged divergence well, as 
shown theoretically in Theorems 3.4, 3.8 and 3.12. Finally, numerical experiments are performed to validate the theoretical 
results.

The outline of this paper is as follows. In section 2 we present some preliminaries about stochastic Maxwell equations, 
including theorems about the evolution of energy and divergence, and the intrinsic stochastic multi-symplectic structure. 
Section 3 is devoted to the comparison and analysis of three stochastic multi-symplectic numerical methods in the aspect 
of averaged energy and averaged divergence. Numerical experiments for stochastic Maxwell equations with additive noise 
are performed in section 4 to verify our theoretical results. Finally, concluding remarks are given in Section 5.

In the sequels, we let e = (1, 1, 1)T and denote by < ·, · >L2 the L2(�) inner product, by < ·, · > the Euclidean inner 
product, by | · | the Euclidean norm, and by E the expectation.

2. Stochastic Maxwell equations with additive noise

It is of interest to study phenomena where the densities of the electric and magnetic currents are assumed to be stochas-
tic. These can be modeled by the following 3-D stochastic Maxwell equations with additive noise{

∂E
∂t = ∇ × H − λ1eχ̇ in (0, T ) × �,

∂H
∂t = −∇ × E + λ2eχ̇ in (0, T ) × �,

(2.1)

with initial conditions

E(0, x, y, z) = (E10 , E20 , E30) in �,

H(0, x, y, z) = (H10 , H20 , H30) in �, (2.2)

and perfectly electric conducting (PEC) boundary conditions

E × n = 0 on (0, T ] × ∂�, (2.3)
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where T > 0, � is a bounded and simply connected domain in R3 with smooth boundary ∂�, n represents the unit outward 
normal of ∂�, and λ1, λ2 are real numbers representing the scales of noise. It is convenient at this point to give a precise 
mathematical definition of χ̇ .

Hereafter, let W be a Q-Wiener process defined on a given probability space (�, F , P), with values in the Hilbert space 
L2(�), which is a space of square integrable real-valued functions. Let {em}m∈N be an orthonormal basis of L2(�) consisting 
of eigenvectors of a symmetric, nonnegative and finite trace operator Q , i.e., Tr(Q ) < ∞ and Q em = ηmem . Then there exists 
a sequence of independent real-valued Brownian motions {βm}m∈N such that

W (t, x, y, z,ω) =
∞∑

m=1

√
ηmem(x, y, z)βm(t,ω), t ≥ 0, (x, y, z) ∈ �,ω ∈ �. (2.4)

And formally set χ̇ = dW
dt .

Remark 1. The expansion formula (2.4) of Q-Wiener process W (t, x, y, z, ω) is based on the orthonormal basis of L2(�), 
which separates the variables (x, y, z) and (t, ω) apart. We note that the well known Wiener chaos expansion (WCE) sep-
arates the variable ω apart from other temporal or spacial variables, and if we apply WCE to the sequence of Brownian 
motions {βm(t, ω)}m∈N , we may also use WCE method to approximate the original equations (2.1); see [1] for more details 
about Wiener chaos expansion.

We refer interested readers to [9] for the well-posedness of problem (2.1). The authors present some results on stochastic 
integrodifferential equations in Hilbert spaces, motivated from and applied to problems arising from the mathematical 
modeling of electromagnetics fields in complex random media. They examine the mild, strong and classical well-posedness 
for Cauchy problem of the integrodifferential equation which describes Maxwell equations complemented with the general 
linear constitutive relations describing such media, with either additive or multiplicative noise.

2.1. Dissipative property of averaged energy

In this subsection, we consider the property of averaged energy for system (2.1). The following theorem shows that the 
averaged energy evolutes linearly with respect to time t and with a growth rate K = 3(λ2

1 + λ2
2)Tr(Q ), here Tr(Q ) denotes 

the trace of operate Q , i.e., Tr(Q ) = ∑
m∈N

< Q em, em>L2 = ∑
m∈N

ηm .

Theorem 2.1. Let E and H be the solutions of the equations (2.1)–(2.3). Then for t ∈ [0, T ], there exists a constant K = 3(λ2
1 +λ2

2)Tr(Q )

such that the averaged energy satisfies the following dissipative property

E(
exact(t)) = E(
exact(0)) + Kt, (2.5)

where 
exact(t) = ∫
�
(|E(t)|2 + |H(t)|2)dxdydz.

Proof. We write (2.1) into

dE = ∇ × Hdt − λ1edW ,

dH = −∇ × Edt + λ2edW .

Let

F1(E(t)) =
∫
�

|E(t)|2dxdydz and F2(H(t)) =
∫
�

|H(t)|2dxdydz.

Since F1 and F2 are Fréchet derivable, the derivatives of F1 along direction ϕ or (ϕ, ψ) are as follows,

D F1(E)(ϕ) = 2
∫
�

< E,ϕ > dxdydz,

D2 F1(E)(ϕ,ψ) = 2
∫
�

< ψ,ϕ > dxdydz. (2.6)

Applying the infinite dimensional Itô formula to F1(E), we have
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F1(E(t)) = F1(E(0)) +
t∫

0

D F1(E(s))(−λ1edW (s))

+
t∫

0

{
D F1(E(s))(∇ × H(s)) + 1

2
Tr
[

D2 F1(E(s))(−λ1eQ
1
2 )(−λ1eQ

1
2 )∗

]}
ds. (2.7)

Substitute (2.6) into (2.7) leads to

F1(E(t)) = F1(E(0)) + 2

t∫
0

∫
�

< E(s),−λ1edW (s) > dxdydz

+
t∫

0

∫
�

{
2 < E(s),∇ × H(s)> + 3λ2

1

∑
m∈N

ηme2
m(x, y, z)

}
dxdydzds. (2.8)

Similarly, we apply Itô formula to function F2(H(t)) and obtain

F2(H(t)) = F2(H(0)) + 2

t∫
0

∫
�

< H(s), λ2edW (s) > dxdydz

+
t∫

0

∫
�

{
2 < H(s),−∇ × E(s)> + 3λ2

2

∑
m∈N

ηme2
m(x, y, z)

}
dxdydzds. (2.9)

Summing (2.8) and (2.9) leads to

F1(E(t)) + F2(H(t)) = F1(E(0)) + F2(H(0))

+ 2

t∫
0

∫
�

(
< H(s), λ2edW (s) > − < E(s), λ1edW (s) >

)
dxdydz

+ 2

t∫
0

∫
�

(
< H(s),−∇ × E(s) > + < E(s),∇ × H(s) >

)
dxdydzds

︸ ︷︷ ︸
(a)

+ 3(λ2
1 + λ2

2)

t∫
0

∫
�

∑
m∈N

ηme2
m(x, y, z)dxdydzds.

Using the Green formula and PEC boundary conditions, we get

(a) = −2

t∫
0

∫
∂�

(E × H) · ndSds = 0.

Hence, there exists a constant K = 3(λ2
1 + λ2

2)Tr(Q ), such that

F1(E(t)) + F2(H(t)) = F1(E(0)) + F2(H(0)) + Kt

+ 2

t∫
0

∫
�

(
< H(s), λ2edW (s) > − < E(s), λ1edW (s) >

)
dxdydz. (2.10)

The assertion follows from applying expectation on equation (2.10). �
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2.2. Conservation law of averaged divergence

As is well known that the electric field and magnetic field are divergence-free if the media is lossless in deterministic 
case. The following theorem shows that for stochastic Maxwell equations with additive noise (2.1) the electric field and 
magnetic field are still divergence-free, but in the sense of expectation. In the following, assume that (U , < ·, · >U , ‖ · ‖U )

and (V , < ·, · >V , ‖ · ‖V ) are two separable Hilbert spaces, and denote HS(U , V ) the space of all Hilbert–Schmidt operators 
from U to V . The norm is defined by

‖Q ‖HS(U ,V ) =
(∑

m

‖Q fm‖V 2

) 1
2
, ∀ Q ∈ HS(U , V ),

with { fm}m∈N being an orthonormal basis of U .

Theorem 2.2. Assume that Q
1
2 ∈ HS(L2(�), H1(�)) with H1(�) being the Sobolev space. Then system (2.1) preserves the averaged 

divergence, i.e.,

E (div(E(t))) = E (div(E(0))), E (div(H(t))) = E (div(H(0))). (2.11)

Proof. Let

G(E) = divE = ∂ E1

∂x
+ ∂ E2

∂ y
+ ∂ E3

∂z
.

Since G is Fréchet derivable, the derivatives of G along direction ϕ or (ϕ, ψ) are as follows,

DG(E)(ϕ) = divϕ, D2G(E)(ϕ,ψ) = 0. (2.12)

Applying the infinite dimensional Itô formula to G(E), we have

G(E(t)) = G(E(0)) +
t∫

0

DG(E(s))(−λ1edW ) +
t∫

0

DG(E(s))(∇ × H(s))ds. (2.13)

Substituting (2.12) into (2.13) and keeping in mind a fact div(∇ × Y) = 0, ∀Y :Rn →R
n , we get

G(E(t)) = G(E(0)) +
t∫

0

DG(E(s))(−λ1edW ). (2.14)

The first assertion in (2.11) follows from taking the expectation on both sides of (2.14).
Analogously, we can get the second assertion in (2.11), by applying Itô formula to function divH. �

2.3. Stochastic multi-symplectic conservation law

In this paper, we use a direct way to rewrite equation (2.1) into the form of stochastic Hamiltonian PDEs. Obviously, 
the direct approach may avoid introducing extra variables; see [2] for another approach based on the stochastic version of 
variational principle to rewrite equation (2.1). By denoting Z = (H1, H2, H3, E1, E2, E3)

T , we have

Mdt Z + K1 Zxdt + K2 Z ydt + K3 Zzdt = ∇Z S1(Z)dt + ∇Z S2(Z) ◦ dW , (2.15)

where ◦ in the second term of the right-hand side of (2.15) denotes Stratonovich sense of integral, and skew-symmetric 
matrices M, K1, K2, K3 are given by

M =
(

0 −I3×3
I3×3 0

)
, K p =

(
Dp 0
0 Dp

)
,∀p = 1,2,3, (2.16)

with I3×3 being the identity matrix and

D1 =
⎛⎜⎝ 0 0 0

0 0 −1

0 1 0

⎞⎟⎠ , D2 =
⎛⎜⎝ 0 0 1

0 0 0

−1 0 0

⎞⎟⎠ , D3 =
⎛⎜⎝ 0 −1 0

1 0 0

0 0 0

⎞⎟⎠ , (2.17)

S1(Z) = 0, S2(Z) = λ2(H1 + H2 + H3) − λ1(E1 + E2 + E3). (2.18)

Similar as the proof of [5, Theorem 2.2], we have the following theorem.
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Theorem 2.3. The stochastic Hamiltonian PDEs (2.15) possess the stochastic multi-symplectic conservative law locally

dtω + ∂xκ1dt + ∂yκ2dt + ∂zκ3dt = 0, a.s.

i.e.,

y1∫
y0

x1∫
x0

z1∫
z0

ω(t1, x, y, z)dxdydz +
y1∫

y0

t1∫
t0

z1∫
z0

κ1(t, x1, y, z)dtdydz

+
x1∫

x0

t1∫
t0

z1∫
z0

κ2(t, x, y1, z)dtdxdz +
x1∫

x0

t1∫
t0

y1∫
y0

κ3(t, x, y, z1)dtdxdy

=
y1∫

y0

x1∫
x0

z1∫
z0

ω(t0, x, y, z)dxdydz +
y1∫

y0

t1∫
t0

z1∫
z0

κ1(t, x0, y, z)dtdydz

+
x1∫

x0

t1∫
t0

z1∫
z0

κ2(t, x, y0, z)dtdxdz +
x1∫

x0

t1∫
t0

y1∫
y0

κ3(t, x, y, z0)dtdxdy,

where ω(t, x, y, z) = 1
2 dZ ∧ MdZ , κp(t, x, y, z) = 1

2 dZ ∧ K pdZ (p = 1, 2, 3) are the differential 2-forms associated with the skew-
symmetric matrices M and K p, respectively, and (t0, t1) × (x0, x1) × (y0, y1) × (z0, z1) is the local definition domain of Z(t, x, y, z).

3. Stochastic multi-symplectic methods

In this section we mainly focus on the analysis of three stochastic multi-symplectic methods for the stochastic Maxwell 
equations (2.1), including the dissipative property of the discrete averaged energy and the conservative property of the 
discrete averaged divergence.

Let �x, �y and �z be the mesh sizes along x, y and z directions, respectively, and �t be the time step length. The 
temporal–spatial domain we are interested in the following sections is [0, T ] × � := [0, T ] × [xL, xR ] × [yL, yR ] × [zL, zR ]. 
It is partitioned by parallel lines, where tn = n�t and xi = xL + i�x, y j = yL + j�y, zk = zL + k�z for n = 0, 1, · · · , N and 
i = 0, 1, · · · , I; j = 0, 1, · · · , J ; k = 0, 1, · · · , K . The grid point function Zn

i, j,k is the approximation of Z(t, x, y, z) at node 
(tn, xi, y j, zk). The general difference operators are employed by:

δt Zn
i, j,k = Zn+1

i, j,k − Zn
i, j,k

�t
, δ̄t Zn

i, j,k = Zn+1
i, j,k − Zn−1

i, j,k

2�t
,

δx Zn
i, j,k = Zn

i+1, j,k − Zn
i, j,k

�x
, δ̄x Zn

i, j,k = Zn
i+1, j,k − Zn

i−1, j,k

2�x
. (3.1)

The same definitions hold for operators δy , δ̄y δz , δ̄z .

3.1. Method-I

Method-I is derived by applying the implicit midpoint method both in spatial and temporal directions to the equations 
(2.15), similarly as the approach in [2], but for the different form of stochastic Hamiltonian PDEs for equations (2.1). It is 
stated as follows

Mδt Zn
i+ 1

2 , j+ 1
2 ,k+ 1

2
+ K1δx Z

n+ 1
2

i, j+ 1
2 ,k+ 1

2
+ K2δy Z

n+ 1
2

i+ 1
2 , j,k+ 1

2
+ K3δz Z

n+ 1
2

i+ 1
2 , j+ 1

2 ,k

= ∇Z S2(Z
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2
)(χ̇ )n

i, j,k, (3.2)

with M , K p (p = 1, 2, 3) and S2 are given by (2.16)–(2.18), and

Z
n+ 1

2

i, j+ 1
2 ,k

= 1

4
(Zn+1

i, j+1,k + Zn+1
i, j,k + Zn

i, j+1,k + Zn
i, j,k).

Terms Zn
i+ 1

2 , j+ 1
2 ,k+ 1

2
, Zn+ 1

2

i+1, j+ 1
2 ,k+ 1

2
, Z

n+ 1
2

i, j+ 1
2 ,k+ 1

2
, Z

n+ 1
2

i+ 1
2 , j+1,k+ 1

2
Z

n+ 1
2

i+ 1
2 , j,k

and Z
n+ 1

2

i+ 1
2 , j+ 1

2 ,k
et al., are defined similarly.

As we stated before χ̇ may formally be considered as the temporal derivative of the Q-Wiener process, i.e., χ̇ = dW
dt . In 

the numerical experiments in Section 4, we calculate (χ̇ )n as follows
i, j,k
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(χ̇ )n
i, j,k := (�W )n

i, j,k

�t
= W n+1

i, j,k − W n
i, j,k

�t
,

where (�W )n
i, j,k means the temporal increment of Wiener process and W n

i, j,k means W (tn, xi, y j, zk).
This method preserves the following discrete version of stochastic multi-symplectic conservation law; the proof is similar 

as [2, Theorem 3].

Theorem 3.1. The method (3.2) satisfies the discrete stochastic multi-symplectic conservation law a.s.,

ωn+1
i+ 1

2 , j+ 1
2 ,k+ 1

2
− ωn

i+ 1
2 , j+ 1

2 ,k+ 1
2

�t
+

(κ1)
n+ 1

2

i+1, j+ 1
2 ,k+ 1

2
− (κ1)

n+ 1
2

i, j+ 1
2 ,k+ 1

2

�x

+
(κ2)

n+ 1
2

i+ 1
2 , j+1,k+ 1

2
− (κ2)

n+ 1
2

i+ 1
2 , j,k+ 1

2

�y
+

(κ3)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+1
− (κ3)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k

�z
= 0,

where

ωn
i, j,k = dZn+1

i, j,k ∧ MdZn
i, j,k, (κp)n

i, j,k = dZn
i, j,k ∧ K pdZn

i, j,k, p = 1,2,3.

We will present the discrete dissipative property of the discrete energy for Method-I in the following theorem.

Theorem 3.2. Assume that En
i, j,k and Hn

i, j,k are solutions of numerical method (3.2), then under the periodic boundary condition the 
discrete energy satisfies the following dissipative property


[I](tn+1) = 
[I](tn) + 2�x�y�z
∑
i, j,k

(
ϒ

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2
(�W )n

i, j,k

)
, (3.3)

where


[I](tn) = �x�y�z
∑
i, j,k

(|En
i+ 1

2 , j+ 1
2 ,k+ 1

2
|2 + |Hn

i+ 1
2 , j+ 1

2 ,k+ 1
2
|2),

and

ϒ
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

= λ2

(
(H1)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ (H2)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ (H3)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

)
− λ1

(
(E1)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ (E2)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ (E3)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

)
. (3.4)

Proof. We may rewrite method (3.2) into the componentwise form of E and H,

δt(E1)
n
i+ 1

2 , j+ 1
2 ,k+ 1

2
= δy(H3)

n+ 1
2

i+ 1
2 , j,k+ 1

2
− δz(H2)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k
− λ1(χ̇ )n

i, j,k, (3.5a)

δt(E2)
n
i+ 1

2 , j+ 1
2 ,k+ 1

2
= δz(H1)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k
− δx(H3)

n+ 1
2

i, j+ 1
2 ,k+ 1

2
− λ1(χ̇ )n

i, j,k, (3.5b)

δt(E3)
n
i+ 1

2 , j+ 1
2 ,k+ 1

2
= δx(H2)

n+ 1
2

i, j+ 1
2 ,k+ 1

2
− δy(H1)

n+ 1
2

i+ 1
2 , j,k+ 1

2
− λ1(χ̇ )n

i, j,k, (3.5c)

δt(H1)
n
i+ 1

2 , j+ 1
2 ,k+ 1

2
= δz(E2)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k
− δy(E3)

n+ 1
2

i+ 1
2 , j,k+ 1

2
+ λ2(χ̇ )n

i, j,k, (3.5d)

δt(H2)
n
i+ 1

2 , j+ 1
2 ,k+ 1

2
= δx(E3)

n+ 1
2

i, j+ 1
2 ,k+ 1

2
− δz(E1)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k
+ λ2(χ̇ )n

i, j,k, (3.5e)

δt(H3)
n
i+ 1

2 , j+ 1
2 ,k+ 1

2
= δy(E1)

n+ 1
2

i+ 1
2 , j,k+ 1

2
− δx(E2)

n+ 1
2

i, j+ 1
2 ,k+ 1

2
+ λ2(χ̇ )n

i, j,k. (3.5f)

Multiplying both sides of each equality from (3.5a) to (3.5f) with

�t�x�y�z(E1)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2
,�t�x�y�z(E2)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2
,�t�x�y�z(E3)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2
,

�t�x�y�z(H1)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2
,�t�x�y�z(H2)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2
,�t�x�y�z(H3)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2
, (3.6)
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respectively, summing all terms in the above equations over all spatial indices i, j, k, it yields


[I](tn+1) = 
[I](tn) + A + B, (3.7)

where

A = −2λ1�x�y�z
∑
i, j,k

[
(E1)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ (E2)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ (E3)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

]
(�W )n

i, j,k

+ 2λ2�x�y�z
∑
i, j,k

[
(H1)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ (H2)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

+ (H3)
n+ 1

2

i+ 1
2 , j+ 1

2 ,k+ 1
2

]
(�W )n

i, j,k.

And B represents the corresponding algebraic formula of the first two terms on the right-hand sides of (3.5a) to (3.5f)
and the above six terms (3.6). We could show that B = 0 using the periodic boundary condition. Thus (3.7) leads to the 
assertion of this theorem. �

Specially, we could obtain the estimate of the discrete averaged energy in the case that W only depends on time. The 
evolution relationship for averaged energy coincides with the continuous case when W only depends on time.

Theorem 3.3. If W = W (t, ω) : [0, T ] × � →R is a Brownian motion, then there exists a constant K̃ = 3(λ2
1 + λ2

2)|�| such that

E (
[I](tn)) = E (
[I](t0)) + K̃ tn, (3.8)

where |�| denotes the volume of domain �.

Proof. From the expressions (3.3) and (3.4), we present the analysis of one term as an example, as the other terms can be 
dealt similarly.

2λ2�x�y�z
∑
i, j,k

E
(
(H1)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2
�Wn

)
= 2λ2�x�y�z

∑
i, j,k

E
[
(H1)

n
i+ 1

2 , j+ 1
2 ,k+ 1

2
+ 1

2

(
(H1)

n+1
i+ 1

2 , j+ 1
2 ,k+ 1

2
− (H1)

n
i+ 1

2 , j+ 1
2 ,k+ 1

2

)]
�Wn. (3.9)

Here �Wn = W (tn+1) − W (tn). Utilizing the properties of the increment of Wiener process leads to

E
(
(H1)

n
i+ 1

2 , j+ 1
2 ,k+ 1

2
�Wn

)
= 0.

And substituting the equation (3.5d) into 
(
(H1)

n+1
i+ 1

2 , j+ 1
2 ,k+ 1

2
− (H1)

n
i+ 1

2 , j+ 1
2 ,k+ 1

2

)
in (3.9) and using the periodic boundary 

condition, we obtain

2λ2�x�y�z
∑
i, j,k

E
(
(H1)

n+ 1
2

i+ 1
2 , j+ 1

2 ,k+ 1
2
�Wn

)
= λ2

2|�|�t.

Similar results hold for others terms. Thus, we get

E (
[I](tn+1)) = E (
[I](tn)) + 3(λ2
1 + λ2

2)|�|�t,

which proves the theorem. �
In order to show that Method-I preserves the discrete version of the averaged divergence, we may need the definition of 

discrete divergence operator at point (xi, y j, zk), which is given as follows; see [13] for the analysis of deterministic case.

∇̄[I]
i, j,k ·

⎛⎜⎝ α

β

γ

⎞⎟⎠ = δxαi− 1
2 , j± 1

2 ,k± 1
2

+ δyβi± 1
2 , j− 1

2 ,k± 1
2

+ δzγi± 1
2 , j± 1

2 ,k− 1
2
, (3.10)

where

αi− 1
2 , j± 1

2 ,k± 1
2

:= αi− 1
2 , j+ 1

2 ,k+ 1
2

+ αi− 1
2 , j+ 1

2 ,k− 1
2

+ αi− 1
2 , j− 1

2 ,k+ 1
2

+ αi− 1
2 , j− 1

2 ,k− 1
2
,

βi± 1
2 , j− 1

2 ,k± 1
2

:= βi+ 1
2 , j− 1

2 ,k+ 1
2

+ βi− 1
2 , j− 1

2 ,k+ 1
2

+ βi− 1
2 , j− 1

2 ,k− 1
2

+ βi+ 1
2 , j− 1

2 ,k− 1
2
,

γi± 1
2 , j± 1

2 ,k− 1
2

:= γi+ 1
2 , j+ 1

2 ,k− 1
2

+ γi+ 1
2 , j− 1

2 ,k− 1
2

+ γi− 1
2 , j− 1

2 ,k− 1
2

+ γi− 1
2 , j+ 1

2 ,k− 1
2
.

The following theorem shows that Method-I preserves the discrete version of averaged divergence.
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Theorem 3.4. The numerical discretization (3.5) to equations (2.1) preserves the following discrete averaged divergence, i.e.,

E
(
∇̄[I]

i, j,k · En+1
)

= E
(
∇̄[I]

i, j,k · En
)
, E

(
∇̄[I]

i, j,k · Hn+1
)

= E
(
∇̄[I]

i, j,k · Hn
)
. (3.11)

Proof. The proof of the two assertions are similar, so here we only present that for electric field E. By the definition (3.10), 
we have

∇̄[I]
i, j,k · En+1 − ∇̄[I]

i, j,k · En = �t
[
δxδt(E1)

n
i− 1

2 , j± 1
2 ,k± 1

2
+ δyδt(E2)

n
i± 1

2 , j− 1
2 ,k± 1

2
+ δzδt(E3)

n
i± 1

2 , j± 1
2 ,k− 1

2

]
Utilizing the method (3.5a)–(3.5c) to replace the temporal difference expressions of E1, E2 and E3 in the above equation 
leads to

∇̄[I]
i, j,k · En+1 − ∇̄[I]

i, j,k · En = �tδx

[
δy(H3)

n+ 1
2

i− 1
2 ,( j− 1

2 )± 1
2 ,k± 1

2
− δz(H2)

n+ 1
2

i− 1
2 , j± 1

2 ,(k− 1
2 )± 1

2

]
+ �tδy

[
δz(H1)

n+ 1
2

i± 1
2 , j− 1

2 ,(k− 1
2 )± 1

2
− δx(H3)

n+ 1
2

(i− 1
2 )± 1

2 , j− 1
2 ,k± 1

2

]
+ �tδz

[
δx(H2)

n+ 1
2

(i− 1
2 )± 1

2 , j± 1
2 ,k− 1

2
− δy(H1)

n+ 1
2

i± 1
2 ,( j− 1

2 )± 1
2 ,k− 1

2

]
+ term(b),

where

term(b) = −λ1δx(�W )n
i−1,( j− 1

2 )± 1
2 ,(k− 1

2 )± 1
2

− λ1δy(�W )n
(i− 1

2 )± 1
2 , j−1,(k− 1

2 )± 1
2

− λ1δz(�W )n
(i− 1

2 )± 1
2 ,( j− 1

2 )± 1
2 ,k−1

,

with (�W )n
i−1,( j− 1

2 )± 1
2 ,(k− 1

2 )± 1
2

= (�W )n
i−1, j−1,k + (�W )n

i−1, j,k−1 + (�W )n
i−1, j−1,k−1 + (�W )n

i−1, j,k and other terms being 
defined in the same way. Utilizing similar approach as in deterministic case (see [13]), we could show that the left hand 
side of the above formula equals to term(b). By the property of Wiener process, we have

E
(
∇̄[I]

i, j,k · En+1 − ∇̄[I]
i, j,k · En

)
= E

(
term(b)

)
= 0. (3.12)

Thus the proof is completed. �
3.2. Method-II

As is well known, for the numerical simulation of deterministic Maxwell equations, Yee’s method is the basis of the 
highly popular CEM numerical methods known as the finite-difference time-domain (FDTD) methods (see the original work 
[15]). It is constructed by central difference in both spatial and temporal directions based on a half-step staggered grid. With 
the difference operators defined in (3.1), we generalize an equivalent form of Yee’s method [8] to discretize the stochastic 
Maxwell equations (2.1) as follows:

δ̄t(E1)
n
i, j,k = δ̄y(H3)

n
i, j,k − δ̄z(H2)

n
i, j,k − λ1(˜̇χ)n+1

i, j,k, (3.13a)

δ̄t(E2)
n
i, j,k = δ̄z(H1)

n
i, j,k − δ̄x(H3)

n
i, j,k − λ1(˜̇χ)n+1

i, j,k, (3.13b)

δ̄t(E3)
n
i, j,k = δ̄x(H2)

n
i, j,k − δ̄y(H1)

n
i, j,k − λ1(˜̇χ)n+1

i, j,k, (3.13c)

δ̄t(H1)
n
i, j,k = −δ̄y(E3)

n
i, j,k + δ̄z(E2)

n
i, j,k + λ2(˜̇χ)n+1

i, j,k, (3.13d)

δ̄t(H2)
n
i, j,k = −δ̄z(E1)

n
i, j,k + δ̄x(E3)

n
i, j,k + λ2(˜̇χ)n+1

i, j,k, (3.13e)

δ̄t(H3)
n
i, j,k = −δ̄x(E2)

n
i, j,k + δ̄y(E1)

n
i, j,k + λ2(˜̇χ)n+1

i, j,k, (3.13f)

where

(˜̇χ)n+1
i, j,k = W n+1

i, j,k − W n−1
i, j,k

2�t
.

Clearly, the above method conserves the following discrete version of stochastic multi-symplectic conservation law.
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Theorem 3.5. Method (3.13) possesses the discrete stochastic multi-symplectic conservation law a.s.,

ω
n+ 1

2
i, j,k − ω

n− 1
2

i, j,k

�t
+

(κ1)
n
i+ 1

2 , j,k
− (κ1)

n
i− 1

2 , j,k

�x
+

(κ2)
n
i, j+ 1

2 ,k
− (κ2)

n
i, j− 1

2 ,k

�y
+

(κ3)
n
i, j,k+ 1

2
− (κ3)

n
i, j,k− 1

2

�z
= 0,

where

ω
n+ 1

2
i, j,k = dZn

i, j,k ∧ MdZn+1
i, j,k, (κ1)

n
i+ 1

2 , j,k
= dZn

i, j,k ∧ K1dZn
i+1, j,k,

(κ2)
n
i, j+ 1

2 ,k
= dZn

i, j,k ∧ K2dZn
i, j+1,k, (κ3)

n
i, j,k+ 1

2
= dZn

i, j,k ∧ K3dZn
i, j,k+1.

Also, we will consider the properties of the discrete averaged energy and the discrete averaged divergence in the follow-
ing contents.

Theorem 3.6. Assume that En
i, j,k and Hn

i, j,k are solutions of numerical method (3.13), then under the periodic boundary condition the 
discrete energy satisfies


[II](tn+1) = 
[II](tn) + �x�y�z
∑
i, j,k

(
ϒn

i, j,k(W n+1
i, j,k − W n−1

i, j,k)
)
, (3.14)

where


[II](tn+1) = �x�y�z
∑
i, j,k

[
<En+1

i, j,k,En
i, j,k> + <Hn+1

i, j,k,Hn
i, j,k>

]
and

ϒn
i, j,k = λ2

(
(H1)

n
i, j,k + (H2)

n
i, j,k + (H3)

n
i, j,k

)
− λ1

(
(E1)

n
i, j,k + (E2)

n
i, j,k + (E3)

n
i, j,k

)
.

Proof. Multiplying both sides of each equation from (3.13a) to (3.13f) with

2�t�x�y�z(E1)
n
i, j,k, 2�t�x�y�z(E2)

n
i, j,k, 2�t�x�y�z(E3)

n
i, j,k,

2�t�x�y�z(H1)
n
i, j,k, 2�t�x�y�z(H2)

n
i, j,k, 2�t�x�y�z(H3)

n
i, j,k,

respectively. The proof is finished by summing all terms in over all spatial indices i, j, k together, and using the periodic 
boundary condition. �

Moreover, we have the following estimation for the discrete averaged energy.

Theorem 3.7. There exists a constant K̂ = 3(λ2
1 + λ2

2)V̄ Q (�) such that

E
(

[II](tn)

)
= E

(

[II](t0)

)
+ K̂ tn. (3.15)

Proof. We need to estimate each term in �x�y�z
∑

i, j,k E
(
ϒn

i, j,k(W n+1
i, j,k − W n−1

i, j,k)
)

. For the first term we have

λ2�x�y�z
∑
i, j,k

E
[
(H1)

n
i, j,k(W n+1

i, j,k − W n−1
i, j,k)

]
= λ2�x�y�z

∑
i, j,k

E
[
(H1)

n
i, j,k(�W )n−1

i, j,k

]
= λ2�x�y�z

∑
i, j,k

E
[(

(H1)
n
i, j,k − (H1)

n−2
i, j,k

)
(�W )n−1

i, j,k

]
= λ2�x�y�z

∑
i, j,k

E
{[

−�tδ̄y(E3)
n−1
i, j,k + �tδ̄z(E2)

n−1
i, j,k + λ2(W n

i, j,k − W n−2
i, j,k)

]
(�W )n−1

i, j,k

}
= λ2

2�x�y�z
∑
i, j,k

E
{
(W n

i, j,k − W n−2
i, j,k)(W n

i, j,k − W n−1
i, j,k)

}
= λ2

2�x�y�z
∑
i, j,k

E
{
(W n

i, j,k − W n−1
i, j,k)

2
}

= λ2
2 V̄ Q (�)�t
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where V̄ Q (�) = �x�y�z
∑

i, j,k

∑
m ηme2

m(xi, y j, zk). Here we mainly use the independent properties of Wiener increments. 
Because other terms could be estimated similarly, we finish the proof by noting that K̂ = 3(λ2

1 + λ2
2)V̄ Q (�). �

Note that the constant V̄ Q (�) here may be regarded as the approximation of Tr(Q ), i.e.,

V̄ Q (�) ≈
∑

m

ηm

∫
�

e2
m(x, y, z)dxdydz =

∑
m

ηm = Tr(Q ).

Furthermore, the method (3.13) preserves the following discrete averaged divergence.

Theorem 3.8. The method (3.13) preserves the following discrete averaged divergence

E
(
∇̄[II] · E

n+ 1
2

i, j,k

)
= E

(
∇̄[II] · E

n− 1
2

i, j,k

)
,

E
(
∇̄[II] · H

n+ 1
2

i, j,k

)
= E

(
∇̄[II] · H

n− 1
2

i, j,k

)
, (3.16)

where ∇̄[II] = (δ̄x, ̄δy, ̄δz)
T .

The proof of this theorem is similar to that of Theorem 3.4, so we omit it here.

3.3. Method-III

We use the central finite difference in spatial direction and implicit midpoint method in temporal direction, then we 
refer to this particular discretization as Method-III (see [13] for deterministic case)

Mδt Zn
i, j,k + K1δ̄x Z

n+ 1
2

i, j,k + K2δ̄y Z
n+ 1

2
i, j,k + K3δ̄z Z

n+ 1
2

i, j,k = ∇Z S2(Z
n+ 1

2
i, j,k )(χ̇ )n

i, j,k. (3.17)

It is shown that method (3.17) preserves the stochastic multi-symplectic conservation law.

Theorem 3.9. The method (3.17) satisfies the discrete stochastic multi-symplectic conservation law a.s.,

ωn+1
i, j,k − ωn

i, j,k

�t
+

(κ1)
n+ 1

2

i+ 1
2 , j,k

− (κ1)
n+ 1

2

i− 1
2 , j,k

�x
+

(κ2)
n+ 1

2

i, j+ 1
2 ,k

− (κ2)
n+ 1

2

i, j− 1
2 ,k

�y
+

(κ3)
n+ 1

2

i, j,k+ 1
2

− (κ3)
n+ 1

2

i, j,k− 1
2

�z
= 0, (3.18)

where

ωn+1
i, j,k = dZn+1

i, j,k ∧ MdZn+1
i, j,k, (κ1)

n+ 1
2

i+ 1
2 , j,k

= dZ
n+ 1

2
i, j,k ∧ K1dZ

n+ 1
2

i+1, j,k,

(κ2)
n+ 1

2

i, j+ 1
2 ,k

= dZ
n+ 1

2
i, j,k ∧ K2dZ

n+ 1
2

i, j+1,k, (κ3)
n+ 1

2

i, j,k+ 1
2

= dZ
n+ 1

2
i, j,k ∧ K3dZ

n+ 1
2

i, j,k+1.

Proof. We take differential in the phase space on both sides of (3.17) to obtain

2�x�y�zM(dZn+1
i, j,k − dZn

i, j,k) + �t�y�zK1(dZ
n+ 1

2
i+1, j,k − dZ

n+ 1
2

i−1, j,k)

+ �t�x�zK2(dZ
n+ 1

2
i, j+1,k − dZ

n+ 1
2

i, j−1,k) + �t�x�yK3(dZ
n+ 1

2
i, j,k+1 − dZ

n+ 1
2

i, j,k−1)

= 2�x�y�z∇2 S2(Z
n+ 1

2
i, j,k )dZ

n+ 1
2

i, j,k (�W )n
i, j,k.

Then taking dZ
n+ 1

2
i, j,k = 1

2

(
dZn+1

i, j,k + dZn
i, j,k

)
and performing wedge product with the above equation yields

�x�y�z(dZn+1
i, j,k ∧ MdZn+1

i, j,k − dZn
i, j,k ∧ MdZn

i, j,k)

+ �t�y�z(dZ
n+ 1

2
i, j,k ∧ K1dZ

n+ 1
2

i+1, j,k − dZ
n+ 1

2
i, j,k ∧ K1dZ

n+ 1
2

i−1, j,k)

+ �t�x�z(dZ
n+ 1

2
i, j,k ∧ K2dZ

n+ 1
2

i, j+1,k − dZ
n+ 1

2
i, j,k ∧ K2dZ

n+ 1
2

i, j−1,k)

+ �t�x�y(dZ
n+ 1

2
i, j,k ∧ K3dZ

n+ 1
2

i, j,k+1 − dZ
n+ 1

2
i, j,k ∧ K3dZ

n+ 1
2

i, j,k−1)

= 0.

Thus we finish the proof by denoting the definitions of discrete differential 2-forms. �
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We also rewrite (3.17) into the component form of E and H as follows:

δt(E1)
n
i, j,k = δ̄y(H3)

n+ 1
2

i, j,k − δ̄z(H2)
n+ 1

2
i, j,k − λ1(χ̇ )n

i, j,k, (3.19a)

δt(E2)
n
i, j,k = δ̄z(H1)

n+ 1
2

i, j,k − δ̄x(H3)
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2
i, j,k − λ1(χ̇ )n

i, j,k, (3.19b)
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n
i, j,k = δ̄x(H2)

n+ 1
2

i, j,k − δ̄y(H1)
n+ 1

2
i, j,k − λ1(χ̇ )n

i, j,k, (3.19c)

δt(H1)
n
i, j,k = −δ̄y(E3)

n+ 1
2

i, j,k + δ̄z(E2)
n+ 1

2
i, j,k + λ2(χ̇ )n

i, j,k, (3.19d)

δt(H2)
n
i, j,k = −δ̄z(E1)

n+ 1
2

i, j,k + δ̄x(E3)
n+ 1

2
i, j,k + λ2(χ̇ )n

i, j,k, (3.19e)

δt(H3)
n
i, j,k = −δ̄x(E2)

n+ 1
2

i, j,k + δ̄y(E1)
n+ 1

2
i, j,k + λ2(χ̇ )n

i, j,k. (3.19f)

The following theorem states the dissipative property for the discrete energy of Method-III.

Theorem 3.10. Assume that En
i, j,k and Hn

i, j,k are solutions of numerical method (3.19), then under the periodic boundary condition, 
the discrete energy satisfies the following dissipative property


[III](tn+1) = 
[III](tn) + 2�x�y�z
∑
i, j,k

(
ϒ

n+ 1
2

i, j,k (�W )n
i, j,k

)
, (3.20)

where


[III](tn) =�x�y�z
∑
i, j,k

( | En
i, j,k |2 + | Hn

i, j,k |2 )
,

and

ϒ
n+ 1

2
i, j,k = λ2

(
(H1)

n+ 1
2

i, j,k + (H2)
n+ 1

2
i, j,k + (H3)

n+ 1
2

i, j,k

)
− λ1

(
(E1)

n+ 1
2

i, j,k + (E2)
n+ 1

2
i, j,k + (E3)

n+ 1
2

i, j,k

)
. (3.21)

The proof is similar to that of Theorem 3.2, so we omit it here.
In the following theorem we give an estimation about the evolution of the discrete averaged energy.

Theorem 3.11. There exists a constant K̄ > 0 such that

E
(

[III](tn)

)
− E

(

[III](t0)

)
≤ K̄ tn. (3.22)

Proof. The estimate of each term in the second term on the right-hand side of (3.20) is similar, so here we present estimates 
of terms related with H1 and E1 as examples.

Using the identity 2an+ 1
2 = 2an + (an+1 − an), the independent property of Wiener increment and (3.19d), we get

E
{

2λ2�x�y�z
∑
i, j,k

(H1)
n+ 1

2
i, j,k (�W )n

i, j,k

}
= E

{
λ2�x�y�z

∑
i, j,k

[(
(H1)

n+1
i, j,k − (H1)

n
i, j,k

)]
(�W )n

i, j,k

}
= E

{
λ2�x�y�z

∑
i, j,k

[ �t

2�z

(
(E2)

n+ 1
2

i, j,k+1 − (E2)
n+ 1

2
i, j,k−1

)
− �t

2�y

(
(E3)

n+ 1
2

i, j+1,k − (E3)
n+ 1

2
i, j−1,k

)
+ λ2(�W )n

i, j,k

]
(�W )n

i, j,k

}
= E

{
λ2�x�y�z

∑
i, j,k

[
− �t(E2)

n+ 1
2

i, j,k δ̄z(�W )n
i, j,k + �t(E3)

n+ 1
2

i, j,k δ̄y(�W )n
i, j,k + λ2

(
(�W )n

i, j,k

)2
]}

,
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where we are benefit from the periodic boundary condition. By Young’s inequality, we may obtain

E
{

2λ2�x�y�z
∑
i, j,k

(H1)
n+ 1

2
i, j,k (�W )n

i, j,k

}
≤ 1

6
�t2�x�y�zE

[∑
i jk

(
(E3)

n+ 1
2

i, j,k

)2 +
∑
i jk

(
(E2)

n+ 1
2

i, j,k

)2
]

+ 3

2
λ2

2�t�x�y�z
∑
i jk

∑
m

ηm
(
δ̄zem(xi, y j, zk)

)2

+ 3

2
λ2

2�t�x�y�z
∑
i jk

∑
m

ηm
(
δ̄yem(xi, y j, zk)

)2 + λ2
2 V̄ Q (�)�t, (3.23)

where V̄ Q (�) := �x�y�z
∑

i, j,k

∑
m ηme2

m(xi, y j, zk). Similarly, for term related with E1, we have

E
{

− 2λ1�x�y�z
∑
i, j,k

(E1)
n+ 1

2
i, j,k (�W )n

i, j,k

}
= E

{
− λ1�x�y�z�t

∑
i, j,k

[
− (H3)

n+ 1
2

i, j,k δ̄y(�W )n
i, j,k + (H2)

n+ 1
2

i, j,k δ̄z(�W )n
i, j,k − λ1

(
(�W )n

i, j,k

)2
]}

≤ 1

6
�t2�x�y�zE

[∑
i jk

(
(H3)

n+ 1
2

i, j,k

)2 +
∑
i jk

(
(H2)

n+ 1
2

i, j,k

)2
]

+ 3

2
λ2

1�t�x�y�z
∑
i jk

∑
m

ηm
(
δ̄yem(xi, y j, zk)

)2

+ 3

2
λ2

1�t�x�y�z
∑
i jk

∑
m

ηm
(
δ̄zem(xi, y j, zk)

)2 + λ2
1 V̄ Q (�)�t. (3.24)

Therefore, by denoting

V̂ Q (�) := V̄ Q (�) + �x�y�z
∑
i jk

∑
m

ηm

((
δ̄xem(xi, y j, zk)

)2 + (
δ̄yem(xi, y j, zk)

)2 + (
δ̄zem(xi, y j, zk)

)2
)
,

we have

E
(

[III](tn+1)

)
≤E

(

[III](tn)

)
+ 1

6
�t2E

(

[III](tn+1)

)
+ 3(λ2

1 + λ2
2)V̂ Q (�)�t.

By Gronwall inequality, there exist constants �t∗ and K := K (V̂ Q (�), λ1, λ2, T ) such that for �t ≤ �t∗ , we have 
E
(

[III](tn)

)
≤ K , ∀ n = 0, 1, · · · , N . Combing this boundedness together with (3.25), there exists another constant K̄ :=

K̄ (V̂ Q (�), λ1, λ2, T ) such that

E
(

[III](tn)

)
− E

(

[III](t0)

)
≤ K̄ tn.

Thus the proof is finished. �
Note that the notation V̂ Q (�) is an approximation of ‖Q

1
2 ‖2

HS(L2(�),H1(�))
, i.e.,

V̂ Q (�) ≈
∑

m

ηm

∫
�

(
|em(x, y, z)|2 + |∇em(x, y, z)|2

)
dxdydz = ‖Q

1
2 ‖2

HS(L2(�),H1(�))
,

while V̄ Q (�) ≈ ∑
m ηm = Tr(Q ) = ‖Q

1
2 ‖2

HS(L2(�),L2(�))
.

Remark 2. If W = W (t, ω) : [0, T ] × � →R is a Brownian motion, the same as Theorem 3.3, we have

E
(

[III](tn)

)
= E

(

[III](t0)

)
+ K̃ tn,

with K̃ = 3(λ2 + λ2)|�|.
1 2
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Define ∇̄[III] = (δ̄x, ̄δy, ̄δz)
T , then Method-III can preserve the following discrete averaged divergence. The proof is similar 

to that of Theorem 3.4.

Theorem 3.12. The numerical discretization (3.19) to stochastic Maxwell equations (2.1) preserves the following discrete averaged 
divergence

E
(
∇̄[III] · En+1

i, j,k

)
= E

(
∇̄[III] · En

i, j,k

)
,

E
(
∇̄[III] · Hn+1

i, j,k

)
= E

(
∇̄[III] · Hn

i, j,k

)
. (3.25)

We may conclude that all of the three numerical methods are shown to be stochastic multi-symplectic and preserve the 
conservation law of the corresponding version of discrete averaged divergence. For the continuous problem, we prove that 
the averaged energy evolutes linearly with respect to time, while each method in our consideration preserves this property 
to certain level. We show that this linear growth property is preserved well by Method-II, whereas Method-I and Method-III 
conserve this property in the case that the noise only depends on temporal variable. Moreover, we could prove that for 
space–time noise, the corresponding discrete averaged energy of Method-III grows at most linearly.

4. Numerical results

In this section, we mainly focus on the simulation of 2-D stochastic Maxwell equations with additive noise, for which 
the electric field and the magnetic field are E = (0, 0, E3)

T , H = (H1, H2, 0)T , respectively. I.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ E3
∂t = ∂ H2

∂x − ∂ H1
∂ y − λ1χ̇ in (0, T ) × �,

∂ H1
∂t = − ∂ E3

∂ y + λ2χ̇ in (0, T ) × �,

∂ H2
∂t = ∂ E3

∂x + λ2χ̇ in (0, T ) × �,

(4.1)

with � = [0, 23 ] × [0, 12 ], T = 1 and initial data being

E3(x, y,0) = sin(3πx) sin(4π y),

H1(x, y,0) = −4

5
cos(3πx) cos(4π y),

H2(x, y,0) = −3

5
sin(3πx) sin(4π y).

Hereafter, we choose the values of 
{

em,�(x, y)
}

m,�∈N and {ηm,�}m,�∈N as

em,�(x, y) = 2
√

3 sin(
3

2
mπx) sin(2�π y), ηm,� = 1

m3 + �3
. (4.2)

By the definition of Wiener process (2.4), we have

(�W )n
i, j := W n+1

i, j − W n
i, j =

∞∑
m,�=1

2

√
3

m3 + �3
sin(

3

2
mπxi) sin(2�π y j)

√
�tξn

m,�, (4.3)

with {ξn
m,�} being independent N(0, 1)-random variables.

In the performance of numerical methods, it is necessary to truncate this infinity sum. Fig. 4.1 displays the value of 
a(m, �) = 2

√
3

m3+�3 with respect to m and �. Observe that, after m, � larger than 25, the values of a(m, �) tend to zero. Thus 
we truncate the noise by taking the sum of 50 terms for both parameters m and � in the following experiments.

And we take the temporal step-size �t = 0.001 and the spatial mesh grid size �x = �y = 1
150 . In order to show the 

influence of noise on the solution, we scale the values of λ1 = λ2 = λ by λ = 0, λ = 0.01, λ = 0.05 and λ = 0.1, respectively. 
Taking the magnetic field H1 for an example, Fig. 4.2 shows the contours until t = T , by using Method-I corresponding to 
different scales of the noise. We observe that the perturbation of magnetic wave H1 becomes much more obvious both in x
and y directions due to the increase of the scale of the noise.

Next, we focus on numerically performing the dissipative properties of averaged energy. Based on Theorems 3.2, 3.6
and 3.10 for three numerical methods applied to 3-D stochastic Maxwell equations, we present the concrete form for 2-D 
case (4.1) respectively.
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Fig. 4.1. The value of a(m, l) with respect to m and l.

(1) Method-I
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∑
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2
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,
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(2) Method-II
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(3) Method-III
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Fig. 4.2. Contours of the H1 for different sizes of noise λ = 0, λ = 0.01, λ = 0.05 and λ = 0.1.

Fig. 4.3 presents the simulation of energies using the proposed methods in Section 3, where the blue lines denote discrete 
energies along 100 trajectories respectively, and the red lines represent the discrete averaged energies using Monte-Carlo 
method. From Theorem 2.1, we know that the linear increment slope of the averaged energy in the continuous case is 
K = 3(λ2

1 + λ2
2)Tr(Q ). As we take λ1 = λ2 = 0.1 here, it follows that K ≈ 0.0816 (because of Tr(Q ) ≈ 1.36), which leads 

to the averaged energy at time T = 1 should be 0.2501. We may observe from Fig. 4.3 that the averaged energy (red 
line) is linear growth with respect to the time for all of three numerical methods. It extends the theoretical results for 
the estimation of the averaged energy in Section 3, since Theorem 3.3 tells that for time-dependent noise, the averaged 
energy evolutes linearly and Theorem 3.11 states that for Method-III, the averaged energy evolutes at most linearly. But the 
values of discrete averaged energy is 0.2 approximately at time T = 1, which is a bit smaller that the number 0.2501 of 
the continuous case. It may caused by taking averaged value only over 100 paths, i.e., 

∑100
p=1

1
100 
(tn, ωp) ≈ E (
(tn)) with 


(tn) being the discrete energy of one of three methods. As we will observe for the error of divergence; it should be zero 
theoretically, however, it is of 10−2 numerically when we approximate it over 100 paths. Meanwhile, Fig. 4.4 presents the 
probability density functions of random variable maxn 
(tn) with 
(tn) being the discrete energy of Method-I, Method-II 
and Method-III, respectively. We may observe that the probability density functions look similar for all of the three methods 
with slightly different probabilities.

Moreover, we consider the numerical simulation for the discrete conservation law of averaged divergence. Since the first 
two components of electric field E are zero for 2-D system (4.1), which means that the averaged divergence-preserving prop-
erty holds naturally. We consider that property of magnetic field H in the following. The definitions of the corresponding 
discrete divergences are given as following:

(1) Method-I

∇̄[I]
i, j · Hn = δx(H1)

n
1 1 + δx(H1)

n
1 1 + δy(H2)

n
1 1 + δy(H2)

n
1 1 ,
i− 2 , j+ 2 i− 2 , j− 2 i+ 2 , j− 2 i− 2 , j− 2
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Fig. 4.3. The averaged energy by Method-I (left), Method-II (middle) and Method-III (right) for λ1 = λ2 = 0.1. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

Fig. 4.4. The probability of density function of discrete energy by Method-I (top left), Method-II (top right) and Method-III (below) for λ1 = λ2 = 0.1.
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Fig. 4.5. The error of averaged divergence of Method-I (left), Method-II (middle) and Method-III (right) for λ1 = λ2 = 0.1 and P = 100.
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2
i, j = δ̄x(H1)

n+ 1
2

i, j + δ̄y(H2)
n+ 1

2
i, j ,

(3) Method-III
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n
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We numerically perform the error of divergence by Monte Carlo method, which is defined by

Err-Div(n) = �x�y
∑

i

∑
j

∣∣∣ 1

P

P∑
s=1

(
∇̄i, j · Hn+1(ωs) − ∇̄i, j · Hn(ωs)

)∣∣∣.
The error results for three methods are displayed in Fig. 4.5. Observe that the scale of the error here is of 10−2 for 

P = 100. This may be due to the value of P is only 100. This point of view is checked in the following. Thanks to the 
special structure of the error of divergence, which means they can be rewritten as the difference of Wiener increments, i.e.,

(1) Method-I
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(3) Method-III
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.

We can utilize the right-hand sides of the above equalities to perform the influence of the number of paths P without solv-
ing the equations themselves directly. Take λ1 = λ2 = 0.1 in Method-III for an example. We take the number of trajectories 
P = 10, 102, 103, 104, 105, 106 respectively to obtain the corresponding values of

1

I J
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Fig. 4.6. The error of averaged divergence v.s. the number of trajectories of P = 10,102,103,104,105,106.

Method-I Method-III

�t (E‖err‖2
L2 )1/2 Order �t (E‖err‖2

L2 )1/2 Order

2−6 0.0793 – 2−6 0.0884 –
2−7 0.0609 0.3805 2−7 0.0648 0.4483
2−8 0.0452 0.4296 2−8 0.0424 0.6113

Fig. 4.7. Mean-square convergence order of Method-I and Method-III for λ1 = λ2 = 0.1.

which represent the error of averaged divergence. From the numerical result, we know that the global residuals of the 
discrete averaged divergence become smaller and smaller with the increasing of the number of trajectories P (see Fig. 4.6).

Finally, we consider the mean-square convergence orders of Method-I and Method-III from numerical point of view, 
because Method-II requires more restriction on the mesh sizes. Fix λ1 = λ2 = 0.1 and �x = �y = 1

150 . Fig. 4.7 displays the 
convergence orders in mean-square sense, where

‖err‖2
L2 = �x�y

∑
i, j

[(
(E3)

N
i, j − (Eref

3 )N
i, j

)2 +
(
(H1)

N
i, j − (Href

1 )N
i, j

)2 +
(
(H2)

N
i, j − (Href

2 )N
i, j

)2
]
.

The reference solution is computed using the time step size �t = 2−9 and the expectation is realized using the average of 
100 independent paths. We may observe a mean-square order of convergence around 0.5 for Method-I and Method-III. It is 
interesting to investigate the convergence results theoretically.

5. Concluding remarks

In this paper, we firstly studied some properties of continuous system of stochastic Maxwell equations driven by an 
additive noise. By using a direct approach, we rewrite stochastic Maxwell equations into the form of stochastic Hamiltonian 
PDEs, and we show that they preserve stochastic multi-symplectic structure almost surely. Furthermore, it is shown that 
the averaged energy increases linearly with respect to the evolution of time, and divergence is preserved in the sense of 
expectation.

Secondly, we proposed and analyzed three stochastic multi-symplectic numerical methods to discretize stochastic 
Maxwell equations with additive noise. Our start point is that in deterministic model, for lossless media, energy is a con-
served quantity and divergence is free with no free charges or currents. They are important criteria to evaluate a numerical 
method is good or not. As is shown in continuous stochastic case, the averaged energy evolutes linearly with the growth of 
time which is caused by random source, and the divergence is preserved in the sense of expectation which means electric 
flux and magnetic flux are preserved in Gaussian random fields in the statistical sense. It is meaningful to investigate the 
preservation of these physical properties by the three numerical methods. We showed that the three numerical methods 
conserve the corresponding versions of dissipative properties of the averaged energy, and the discrete averaged energies 
evolute at most linearly with respect to time. For Method-I, we only obtain the linear evolution relationship for the case 
that the noise only depends on time variable; the result of Method-II approximates the continuous case best, for which 
we show that the discrete averaged energy evolutes linearly with the rate approximates the one of continuous case for 
temporal–spatial noise; For Method-III, the situation is similar as that of Method-I, but furthermore, we show that for 
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the general noise case, the discrete averaged energy of Method-III evolutes at most linearly. Moreover, the three methods 
preserve the conservation law of the discrete divergence in the sense of expectation.

At last, some numerical experiments are performed to support our theoretical results. To truncate the infinite-
dimensional Wiener process, which might be represented as an infinite summation of a sequence, we display the values of 
the sequence with respect to indices. We observe that for small noise, the electric and magnetic waves are not strongly per-
turbed, but when the noise level is higher and apparently the waves are destroyed. In the performance of discrete averaged 
energy and divergence, we could observe from Section 4, all of the three methods reach the similar results. Furthermore, 
special attentions are needed to pay to the performance of Method-I, since the condition number of its iterates matrix is 
poorer than that of Method-II and Method-III, we utilize the splitting strategy proposed in [6] to deal with the problem, 
which could still preserve the discrete stochastic multi-symplectic conservation law. As for Method-II, it is a three-layer 
method, which needs another method to initialize, while the evolution of the discrete averaged energy is supported better 
in theoretical than Method-I and Method-III.
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